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Agenda

 Background & motivation

 Theory Review
 Hurty/Craig-Bampton substructuring (HCB method)

 System-level characteristic constraint mode interface reduction (S_CC method)

 Normal contact

 Friction

 Selection of interface reduction basis

 Results

 Conclusions & future research
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Background & motivation
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Interior DOF

reduced by component mode synthesis (CMS) methods

Interface DOF

reduced by characteristic constraint 

(CC) mode methods

Goal: add nonlinear elements here 

& apply interface reduction

Image: http://www.ssanalysis.co.uk/blog/2012/10/29/bolted-joints-in-finite-element-models-our-first-training-webinar



Prototype C-beam assembly (“S4 beam”)
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 Analysis Overview
 Full FEA Model (94,000 DOF) → HCB Model (3,700 DOF)

 Define contact areas between surfaces with penalty spring elements

 HCB Model (3,700 DOF) → SCC Model (50 DOF)

 Use normal contact to define friction in contact plane

 Simulate reduced order model and observe response



Review of Craig-Bampton Substructuring

 Equations of motion for an arbitrary dynamical system with localized 
nonlinearities

M ሷu + K u + fNL u, ሶu = fext

 Apply Hurty/Craig-Bampton method to reduce interior (non-interface) degrees of 
freedom with Mii − ω2 Kii ΦFI = 0

ui
uj

=
ϕFI −Kii

−1Kij

0 I

qi
uj

= THCB q

 Transform equations of motion:
THCB

T M THCB ሷq + THCB
T K THCB q + THCB

T fNL u, ሶu = THCB
T{fext}

𝐌𝐇𝐂𝐁 ሷ𝐪 + 𝐊𝐇𝐂𝐁 𝐪 + 𝐟𝐍𝐋
𝐇𝐂𝐁 𝐮, ሶ𝐮 = {𝐟𝐞𝐱𝐭

𝐇𝐂𝐁}
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Where nui ≫ nqi

Model size can still be unacceptably large because of 

the number of DOF at substructure interfaces



Review of System Characteristic Constraint 
Interface Reduction
 Reduction method requires all subcomponents to be assembled together first 

(CMS). Then, can keep interior modal DOFs and reduce physical interface DOFs 
using the S_CC method:

q =
qi
uj

=
I 0
0 Ψ

qi
qj

= TSCC s

with Mjj − ω2Kjj Ψ = 0

 Apply Transformation:

TSCCe
T MHCB TSCCe ሷs + TSCCe

T KHCB TSCCe s + TSCCe
T fNL

HCB u, ሶu = TSCCe
T{fext

HCB}

𝐌𝐒𝐂𝐂𝐞 ሷ𝐬 + 𝐊𝐒𝐂𝐂𝐞 𝐬 + 𝐟𝐍𝐋
𝐒𝐂𝐂𝐞 𝐮, ሶ𝐮 = {𝐟𝐞𝐱𝐭

𝐒𝐂𝐂𝐞}
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Converts all remaining physical DOF to modal DOF



Want to maintain physical bolt DOF:

𝐪𝐢
𝐮𝐣

→

𝐪𝐢
𝐮𝐫
𝐮𝐛

→

𝐪𝐢
𝐪𝐫
𝐮𝐛

And reduce such that:  𝐧𝐮𝐫 ≫ 𝐧𝐪𝐫

S_CC does not retain physical DOF

 Need physical DOF onto which we can apply preload:
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Retain physical DOF



System Level Constraint Modes Expansion
(SCCe)

MCB =

MCBii
MCBir

MCBib

MCBri
MCBrr

MCBrb

MCBbi
MCBbr

MCBbb

KCB =

ΩFI
2 0 0
0 KCBrr

KCBrb

0 KCBbr
KCBbb

MCBrr
ω2 − KCBrr

ψSCCrr = 0

DOF Labels:
i = interior

b= bolt

r = remaining 

interface

These modes aren’t enough

by themselves to correctly

constrain the bolt and patch

interfaces:

Augment system with 

constraint modes similar 

to the HCB method.

ΨSCCe = ψSCCrr
′ ΦCM ΦCM =

−Krr
−1Krb

Inb

Then the transformation: 

TSCCe =
Ini 0

0 ΨSCCe
=

Ini 0 0

0 ψSCCrr −Krr
−1Krb

0 0 Inb

qi
ur
ub

= TSCCe

qi
qr
ub

Static 

Condensation



 Typically interface reduction means ALL of interface must be reduced

 Can’t just multiply a partition of DOF by identity.
 Causes reduced interface set to act like fixed interface modes.

 Alleviate with constraint modes

Expansion to S_CC Theory: SCCe

𝑇𝑆𝐶𝐶𝑒 =
𝐼𝑛𝑖 0

0 Ψ𝑆𝐶𝐶𝑒
=

𝐼𝑛𝑖 0 0

0 𝜓𝑆𝐶𝐶𝑟𝑟 −𝐾𝑟𝑟
−1𝐾𝑟𝑏

0 0 I𝑛𝑏

Physical DOF retained, 

42 DOF model provides 

accuracy of <1% error 

for modes under 1kHz.



Normal contact model – penalty method

Force

Overlap
1

kpen
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Don’t want interfaces to be able to penetrate

Preload

Compressive 

only springs



Sensitivity to penalty stiffness, kpen
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Excessive nodal 

interpenetration

Potential 

numerical ill-

conditioning/

instability

“sweet spot”



Sensitivity to penalty stiffness, kpen
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Preload-induced deformation (kpen = 100∙kbolt)
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Friction models

Regularized Friction Model:

ε = model parameter (usually a small number ~ 10-4)

n = model parameter controlling stiffness of 

governing ODE (high n → stiffer system)

Coulomb’s Law:

μS = static friction coefficient

μD = dynamic friction coefficient

Vr = relative velocity of contacting surfaces

Perfectly vertical slope

(multi-valued μ at Vr = 0) Non-vertical slope

(unique μ for every Vr)
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Verification: Regularized Coulomb 
friction models

Analytical solution: Numerical solution:
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Vigué, Pierre, et al. "Regularized friction and continuation: Comparison with 

Coulomb's law." Journal of Sound and Vibration 389 (2017): 350-363.



Analytical solution: Numerical solution:
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Vigué, Pierre, et al. "Regularized friction and continuation: Comparison with 

Coulomb's law." Journal of Sound and Vibration 389 (2017): 350-363.

Verification: Regularized Coulomb 
friction models



HCB Results

17

Impulse load



HCB Results – Full-field Deformation History
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HCB Results - Time-evolution of contact area
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Problem: how do we choose the “right” characteristic constraint (CC) 

modes to capture the local dynamics at the interfaces?



Selection of Interface Reduction Basis

 Essence of the problem:
 Change in system stiffness is governed by change in interface contact 

area (nodes free to connect & disconnect)

 Interface-substructure force interaction is controlled by contacting 
nodes (nodes constrained together)

 Need mode shapes that represent BOTH free-interface and 
constrained-interface motion

 Solution: constraining/unconstraining process to build mode 
shapes
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Constrained/Unconstrained Mode Shapes
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Perform preload analysis 

and determine:

• set of nodes in contact Γc

• vector of nodal 

displacements {xp}

~66% of patch in 

contact after preload

Build transformation matrix 

[L] that constrains node pairs 

in Γc to have the same y-

displacement

Γc
uHCB u = L uHCB c

Nodes in Γc

partially 

constrained

Nodes free 

to move 

independe

ntly

Mc = L T MHCB [L]

Kc = L T KHCB [L]

Now have constrained M and K



Constrained/Unconstrained Mode Shapes
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Tc =

Ini 0 0

0 ψSCCrr −Kcrr
−1Kcrb

0 0 Inb

Mc =

Mcii
Mcir

Mcib

Mcri
Mcrr

Mcrb

Mcbi
Mcbr

Mcbb

Kc =

ΩFI
2 0 0
0 Kcrr

Kcrb

0 Kcbr
Kcbb

Mcrr
ω2 − Kcrr

ψSCCrr = 0

Build [Tc] using the SCCe

method on constrained 

system

Transform [Tc] back to 

unconstrained coordinates using 

[L] & augment with preloaded 

nodal displacements {xp}

Tu = L Tc xp

{uSCCe} = Tu uHCB u

MSCCe = Tu
T MHCB [Tu]

KSCCe = Tu
T KHCB [Tu]

From preload

Can now use 𝑴𝑺𝑪𝑪𝒆 and 𝑲𝑺𝑪𝑪𝒆 to run dynamic analysis



Results – 10 SCCe modes

23

System-level displacement OK, but contact area not captured well



Results – 10+ SCCe modes
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Slowly converges to HCB “truth” solution, but still doesn’t allow 

for loss of contact



Idea: augment with interface RBMs
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Tnew = Told [ΨRBM]

Allows for loss of contact, but still need many CC modes



Comparison of Analysis Run Times
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Run Time for 10 ms of Simulation Time (Implicit)

Hours Minutes Seconds % of HCB Time

HCB 0 4 42 -

SCCe - 10 CC modes 0 6 4 129%

SCCe - 50 CC modes 0 8 23 178%

SCCe - 100 CC modes 0 15 20 326%

Run Time for 10 ms of Simulation Time (Explicit)

Hours Minutes Seconds % of HCB Time

HCB 4 20 20 -

SCCe - 10 CC modes 0 38 8 15%

SCCe - 50 CC modes 0 42 8 16%

SCCe - 100 CC modes 1 1 16 24%

Interface reduction here is valuable if you must use 

explicit methods, but not if implicit methods are available



Preliminary results for friction 
implementation
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Fconst

2h hh

Klinear
Klinear

Kpenalty

Fnl (t)

Front view



Friction Model Results
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Without friction (impulse amplitude = 1,000N) With friction (impulse amplitude = 1,000N)



Friction Model Results
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Friction Model Results
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Without friction (impulse amplitude = 10,000N) With friction (impulse amplitude = 10,000N)



Friction Model Results
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Conclusions

 System-level displacement shows agreement 
between the HCB model and the SCCe model
 However, SCCe models exhibit difficulties in capturing the 

contact area

 Interface reduction provides cost savings for explicit 
time integration scheme (but not implicit)
 reduces computational cost substantially in dynamic simulations
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Next Step

 Incorporate regularized friction elements into the C-
Beam model to gain insight into the significance of 
friction in structural dynamics
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Background – Penalty Method

Fext

Fext

Fpen

Penalty force 

applied to limit, but 

not eliminate, 

overlap

Fpe

n

Δga

p
1

kpen

Make penalty force proportional to overlap

(constant of proportionality = penalty 

stiffness)

Fext

Fext

Nodes initially 

separated

Δgap ≥ 0

Fext

Fext

Nodes overlap

Δgap < 0

Violation of the contact condition (nodes do not overlap) is “penalized” by adding energy to 

the system that is proportional to the non-physical overlap (Epen =
1

2
kpenΔgap

2 ).
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Update ε

What’s the correct preload to apply?

L0 L1
L2

Impose ε

𝐅
𝐞𝐱𝐭

= 𝐄𝐀𝛆

𝐅
𝐞𝐱𝐭

= 𝐄𝐀𝛆

Apply preload

𝐮𝐓

𝐮𝐁

L1 = 1 + ε L0

Solve for 

displacement field

L2 = L0 + uT − uB

∆L = L2 − L1

Fint =
EA

L0
∆L

L1

≈ 𝐅𝐭𝐫?
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What’s the correct preload to apply?

 Given bolt torque from experimental group (Project #5), 
compute transmitted axial force

 Use equation from [1] to do conversion:

Ftr =
T

0.159P + 0.578d2μT + 0.5DfμH

 Ftr = transmitted axial force, T = applied bolt torque, P = bolt 
pitch, d2 = nominal bolt diameter, Df = average contact 
diameter, μT = thread friction coeff., μH = head friction coeff.
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